THE SYNTHESIS AND REACTION OF α,α -BIS(PHENYLTHIO)-Y-BUTYROLACTONE. A CONVENIENT METHOD FOR THE PREPARATION OF 3-SUBSTITUTED 2-BUTEN-4-OLIDE

Mikio WATANABE, Kozo SHIRAI, and Takanobu KUMAMOTO

Department of Chemistry, Faculty of Science, Tokai University

Kitakaname, Hiratsuka, Kanagawa 259-12

The reaction of γ -butyrolactone with N-phenylthiophthalimide in the presence of lithium diisopropylamide afforded α,α -bis(phenylthio)- γ -butyrolactone $\underline{1}$ in high yield. Further, a convenient method for the preparation of 3-substituted 2-buten-4-olide was established by the use of 1.

In the past few years there has been a rapid growth of interest in the preparation of butenolides $^{1)}$ or methylene lactones $^{2)}$ by the use of α -sulfenylated or α -sulfinylated Y-butyrolactones as important synthetic intermediates. For example, H. Uda and co-workers have reported the excellent method for the synthesis of 3-substituted 2-buten-4-olides by the conjugate addition reaction of 3-phenylthio-2-buten-4-olide with organocopper reagents or diethyl malonate $^{3)}$.

In the course of our study on the sulfenylation of active methylene compounds or ketones by the use of sulfenamides, we have reported the preparation of 2,2-bis(phenylthio)cyclohexanone by the use of N-phenylthiophthalimide.

We now wish to report in this paper the preparation of α, α -bis(phenylthio)-1-butyrolactone $\underline{1}$ and 3-substituted 2-buten-4-olide starting from $\underline{1}$.

Scheme I

To a tetrahydrofuran(THF) solution of lithium diisopropylamide(4.85g, 0.048 mol) was added excess amounts of \mathbf{i} -butyrolactone(2.50g, 0.029 mol) in 10 ml THF at -50° C. After addition of hexamethylphosphoramide(3.58g, 0.02 mol), the lactone enolate was treated with N-phenylthiophthalimide(10.20g, 0.04 mol). The reaction mixture was stirred for 1 hr at -50° C, followed by additional stirring for 1 hr at -20° C and at room temperature for 2 hr. General work-up afforded α,α -bis (phenylthio)- \mathbf{i} -butyrolactone 1^{5}) in 81% (based on N-phenylthiophthalimide) yield.

Further, a convenient route to the 3-substituted 2-buten-4-olides starting from $\underline{1}$ outlined in scheme II was established.

Oxidation of $\underline{1}$ with 2 equiv of m-chloroperbenzoic acid was carried out in CHCl $_3$ for 1 hr at 0-5°C. The reaction mixture was quenched with aqueous solution of NaHCO $_3$ and Na $_2$ S $_2$ O $_3$, and evaporation of the organic layer gave a crude oil of $\underline{2}$. This crude $\underline{2}$ was thermolized without further purification in refluxing CHCl $_3$ for 1 hr. The reaction mixture was concentrated to an oil; treatment with petroleum ether-ether provided crystals of 2-phenylsulfinyl-2-buten-4-olide 6) in

Table

Substituents R	Conditions of Michael addition	Conditions of thermolysis	Overall yield [*] Butenolides <u>5</u> %
CH(CO ₂ Et) ₂	EtOH EtOLi -50°C 40 min	CHCl3-CCl4 6 hr	CH(CO ₂ Et) ₂ a) 76
CO₂Et CH COCH₃	;	\$ 10 hr	CO ₂ Et ^{b)} CH COCH ₃ 79
PhS	THF n-BuLi -5Ò°C 40 min	; 6 hr	S P h c) 62

- * Yields given are for isolated products.
- a) Anal.(%) Calcd. for $C_{11}H_{14}O_6$: C, 54.54; H, 5.38, Found: C, 54.44; H, 5.62, NMR(60 MHz, CDCl₃): 5.87(s, 1H), 4.78(s, 2H), 4.49(s, 1H), 4.06(q, 4H), 1.26(t, 6H), IR: 1780, 1750 cm⁻¹.
- b) This product is insoluble in methanol or chloroform or dimethyl sulfoxide. Mp $166-167^{\circ}$ C from benzene. Anal.(%) Calcd. for $C_{10}H_{12}O_5$: C, 56.60; H, 5.70, Found: C, 56.48; H, 5.52, IR: 1705 cm⁻¹, MS: m/e 202(202.20).
- c) Mp $46-48^{\circ}$ C from petroleum ether(boiling range $34-40^{\circ}$ C). Anal.(%) Calcd. for $C_{10}H_{8}O_{2}S$: C, 62.50; H, 4.20; S, 16.67, Found: C, 62.45; H, 4.37; S, 16.71, NMR(60 MHz, CDCl₃): 7.42-6.92(m, 5H), 5.76(s 1H), 4.75(s, 2H), IR: 1780 cm⁻¹.

86% overall yield.

Furthermore, Michael addition reaction of $\underline{3}$ with active methylene compounds or thiophenol followed by thermolysis of resulting adducts $\underline{4}$ afforded 3-substituted 2-buten-4-olide in high overall yield. These results are summarized in the table.

In a typical procedure, to a 10 ml ethanol solution of diethyl lithiomalonate, prepared from lithium ethoxide(3.9 mmol) and diethyl malonate(0.720g, 4.5 mmol), was added crystals of $\underline{3}(0.624g, 3 \text{ mmol})$ at -50°C , and the mixture was stirred for 40 min at -50°C . Quenching the reaction mixture with 10% HCl followed by evaporation of organic layer afforded a crude oil of $\underline{4}$ -a. Thermolysis of the crude $\underline{4}$ -a was carried out in refluxing $\text{CHCl}_3\text{-CCl}_4(1:3)$ for 6 hr. After removal of the solvent, the residue was chromatographed on silica gel to give pure 3-[bis(ethoxy-carbonyl)methyl]-2-buten-4-olide(0.555g) in 76% overall yield.

Further, application of 3, as a synthetic intermediate, to natural products is now in progress.

References and Notes

- 1) B. M. Trost and T. N. Salzmann, J. Amer. Chem. Soc., <u>95</u>, 6840 (1973).
- 2) P. A. Grieco and J. J. Reap, Tetrahedron Lett., 1097 (1974); R. C. Ronald, Tetrahedron Lett., 3831 (1973); J. L. Herrmann, M. H. Bergar, and R. H. Schlessinger, J. Amer. Chem. Soc., 95, 7923 (1973).
- 3) K. Iwai, H. Kosugi, and H. Uda, Chem. Lett., 1237 (1974); K. Iwai, M. Kawai, H. Kosugi, and H. Uda, Chem. Lett., 385 (1974).
- 4) T. Kumamoto, S. Kobayashi, and T. Mukaiyama, Bull. Chem. Soc. Japan, <u>45</u>, 866 (1972).
- 5) Mp 57-58°C from ligroin. Anal.(%) Calcd. for $C_{15}H_{14}O_{2}S_{2}$: C, 63.57; H, 4.67; S, 21.18, Found: C, 63.48; H, 4.68; S, 21.42, NMR(60 MHz, CDCl₃) 7.70-7.15 (m, 10H), 4.20(t, 2H), 2.50(t, 2H), IR: 1760 cm⁻¹. MS: m/e 302(302.3).
- 6) Washing of crude crystals with petroleum ether-ether (1:1) gave pure crystals of 3(mp 83-85°C). Anal.(%) Calcd. for C₁₀H₈O₃S: C, 57.69; H, 3.87: S, 15.40, Found: C, 58.04; H, 3.93; S, 15.57, NMR(60 MHz, CDCl₃): 7.92-7.00(m 6H), 4.86(s, 2H), IR: 1750 cm⁻¹.

(Received May 17, 1975)